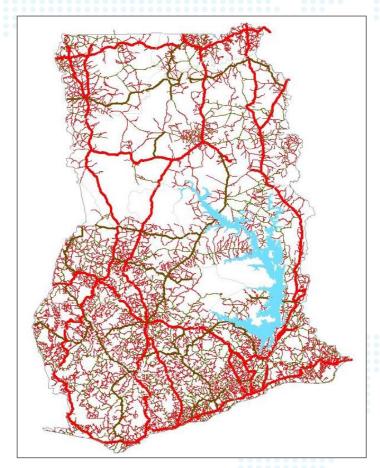
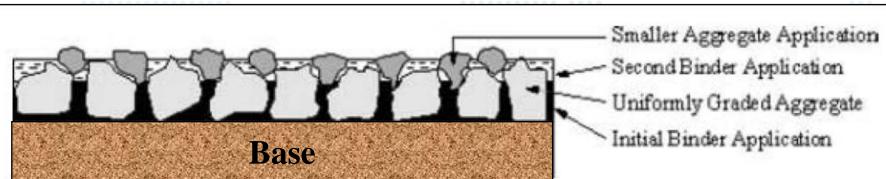
Modification of Bitumen with Waste Materials for Enhanced Aggregate Retention in Surface-Dressed Roads


Kenneth A. Tutu, Ph.D.
Nathan David Obeng-Amoako
Francisca Owusu-Ansah
Santus Y. Worclachie
Arthur L. E. Senaya
Eugene K. Damoah
Bundu N. Kassim

Ghana's Road Network Size in 2019

2019 Annual Progress Report, Ministry of Roads and Highways (https://ndpc.gov.gh/media/Ministry_of_Roads_and_Highways_APR_2019.pdf)



Surface Dressing

Adapted from Buss et al. (2016) https://www.oregon.gov/ODOT/Programs/ResearchDocuments/SPR777_ChipSeal.pdf

Aggregate Loss (Raveling)

- □ Traffic: abrasive forces dislodge aggregates
- □ Moisture: weakens the aggregate—bitumen bond
- □ Aging: bitumen becomes brittle and easily cracks

Plastic Wastes

https://africa.cgtn.com/2019/06/10/ghana-epa-total-ban-on-plastics-not-practical/

https://www.graphic.com.gh/features/features/plastic-waste-or-value.html/

https://newsghana.com.gh/ghanaian-company-turns-plastic-wastes-into-valuable-products/

HDPE = High-density polyethylene

LDPE = Low-density polyethylene

PET = Polyethylene terephthalate

EPS = Expanded polystyrene foam

GTR = Ground tyre rubber

Expanded Polystyrene Foam (Styrofoam)

- □ Food packaging
- Industrial packaging
- □ Building & construction

Waste Tyres (GTR)

https://www.gepecotech.com/release/blog/22.html

Research Question & Methodology

Can waste **plastics**, **styrofoam**, and **tyres** modify bitumen to improve aggregate retention on surface-dressed roads?

Test Bitumen and Aggregates

Determine Waste Material Content

Produce Surface Dressing "Mixture"

Simulate Material Aging

Mould Test Specimens

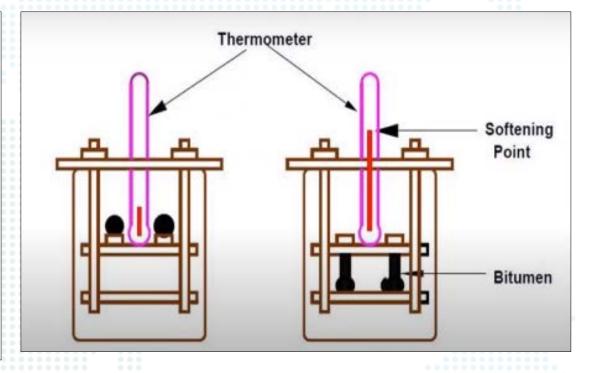
Simulate Moisture Damage

Test Aggregate Loss

Granite Aggregate Test Results

Property	Value	Specification*	
Flakiness Index	18%	30% (max)	
Elongation Index	12%	35% (max)	
Aggregate Crushing Value	20%	25% (max)	
Los Angeles Abrasion	25%	30% (max)	
10% Fines	280 kN	210 kN (min)	
Water Absorption	Water Absorption 0.2%		

^{*}Standard Specification for Road and Bridge Works, Ghana's Ministry of Roads and Highways, 2007

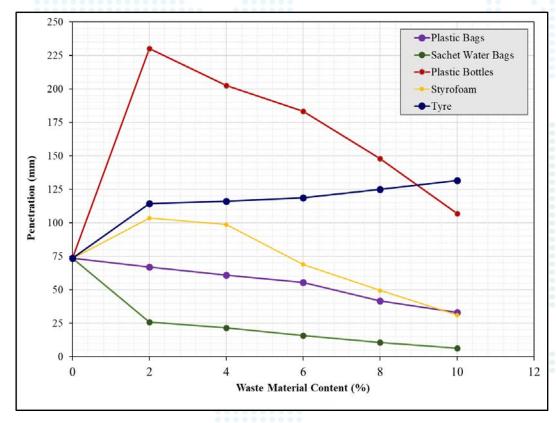


Waste Material Content Determination

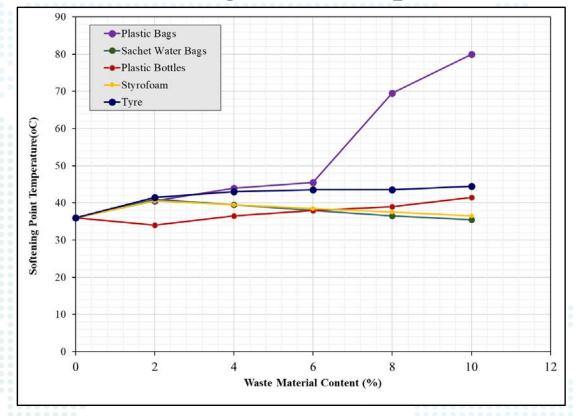
Penetration Test (ASTM D5)

Penetration 100 g 100 g 25°C Bitumen

Softening Point Test (ASTM D36)


 $https://www.google.com/search?q=softening+point+test+bitumen\&source=lmns\&tbm=vid\&bih=892\&biw=1920\&rlz=1C1SQJL_enUS930US930\&hl=en\&s=X\&ved=2ahUKEwivh9jn967-AhUatycCHet5ANYQ_AUoAnoECAEQAg\#fpstate=ive\&vld=cid:3efa0dc5,vid:Uh_t2C9SN3M$

 $https://www.google.com/search?q=softening+point+test+bitumen\&source=lmns\&tbm=vid\&bih=892\&biw=1920\&rlz=1C1SQJL_enUS930US930\&hl=en\&sa=X\&ved=2ahUKEwivh9jn967-AhUatycCHet5ANYQ_AUoAnoECAEQAg\#fpstate=ive\&vld=cid:3efa0dc5,vid:Uh_t2C9SN3M$



Waste Material Content Determination

Penetration

Softening Point Temperature

Specimen Preparation and Conditioning

Mixture Preparation

- 75% granite (10mm &14mm)
- 25% quarry dust (for stability)
- 6% bitumen content (by weight of aggregate)
- Aggregate & bitumen mixing @ 165 °C

Short-Term Aging

- Mixture in oven @ 130 °C for 3 hrs.
- 6 Marshall specimens (50 blows per face)
- 3 specimens in water @ 25 °C for 12 hrs
- 3 dry specimens at room temperature

Long-Term Aging

- Mixture in oven @ 95 °C for 5 days
- 6 Marshall specimens (50 blows per face)
- 3 specimens in water @ 25 °C for 12 hrs
- 3 dry specimens at room temperature

Cantabro Abrasion Loss Test (TXDOT: TEX-245-F)

Before Testing

After Testing

Mass Before Testing — Mass After Testing

Mass Before Testing

- High abrasion loss means poor aggregate retention (weak bonding)
- Low abrasion loss means better aggregate retention (strong bonding)

Cantabro Abrasion Loss (%)

Bitumen Modifier	Short-Term Aging		Long-Term Aging	
	Dry Specimen	Wet Specimen	Dry Specimen	Wet Specimen
Unmodified Bitumen (AC-10)	1.8	6.6	100.0	100.0
Styrofoam (EPS)	1.5	7.0	100.0	100.0
Sachet Water Bag (LDPE)	4.3	15.0	100.0	100.0
Plastic Bottle (PET)	6.0	16.6	100.0	100.0
Grocery Bag (HDPE)	4.0	10.9	87.8	89.3
Ground Tyre Rubber (GTR)	3.2	7.4	34.5	44.2

Conclusion & Recommendation

- Ground tyre rubber modification produced better <u>aggregate</u>
 retention under the combined <u>effect of moisture and long-term aging</u>
- Field studies are recommended to validate the laboratory results

