

Assessing the Influence of Electric Bicycle Integration on BlueBikes System Usage

A One-Year Analysis of Ridership Trends and Behavioral Patterns in Greater Boston

NatDave (2024)

Presentation Outline

1

Project Overview & Goals

Exploratory Data Analysis

Statistical Tests

Results and Conclusions

Strengths and Weaknesses

Project Overview

What has changed since the introduction of e-bikes into the Bluebikes fleet?

Project Goals

Trip Duration Analysis:

how much further or shorter riders are willing to ride based on bike type

Usage Patterns:

based on time of day, day of week, user type (casual vs. member), etc.

3 Station Popularity:

which stations are most/least frequently used based on bike type

Bluebikes System Data

Feature	Description	
ride_id	IDs assigned to each ride	
rideable_type	whether bike is electric or non-electric	
started_at	when the ride begins (time and date)	
ended_at	when the ride ends (time and date)	
start_station_name	the name of the station where the ride starts	
start_station_id	ID assigned to the station where the ride starts	
end_station_name	the name of the station where the ride starts	
end_station_id	ID assigned to the station where the ride ends	
start_lat	latitude coordinate of the station where the ride starts	
start_Ing	longitude coordinate of the station where the ride starts	
end_lat	latitude coordinate of the station where the ride ends	

Data Cleaning and Preprocessing

- Missing values (< 0.01%)
- 2

Temporal feature engineering

Station mapping validation

Same station trips (< 5 mins)

Date-time columns

Station Popularity Analysis

Daily Fluctuations in Bike Trips

• • •

Trips by Hour of Day & Day of Week

All Bikes - Daily Trips by Hour of Day and Day of Week

Trips by Hour of Day & Day of Week

Analysis of Rider Type by Bike Type

Total Trips by Rider Type and Bike Type

Top Station Pairs

start_station_name <chr></chr>	end_station_name <chr></chr>	Count <int></int>
MIT at Mass Ave / Amherst St	Beacon St at Massachusetts Ave	5148
MIT at Mass Ave / Amherst St	MIT Vassar St	5132
Beacon St at Massachusetts Ave	MIT at Mass Ave / Amherst St	4585
MIT Vassar St	MIT at Mass Ave / Amherst St	4558
MIT Vassar St	MIT Stata Center at Vassar St / Main St	4542
MIT at Mass Ave / Amherst St	Central Square at Mass Ave / Essex St	4339
MIT Vassar St	Ames St at Main St	4326
Central Square at Mass Ave / Essex St	MIT Pacific St at Purrington St	4279
MIT Stata Center at Vassar St / Main St	MIT Vassar St	3944
MIT Pacific St at Purrington St	MIT Stata Center at Vassar St / Main St	3812

Trip Durations by Bike Type

Electric bikes: 13.84 minutes, Classic bikes: 15.00 minutes

Monthly Variations in Ridership

Seasonal Variations in Ridership

Statistical Tests

Hypothesis Test (t-test):

Compare trip durations between electric and classic bikes

Analysis of Variance:

Analyze the impact of seasonality on trip duration for e-bikes and classic bikes

Testing of Proportions:

Do we have more than a quarter of all the trips taking place during the summer?

Hypothesis Testing for Trip Durations (Two-sample t-test)

Null hypothesis: $H_0: \mu_{electric \ bike} = \mu_{classic \ bike}$ **Alt. hypothesis:** $H_1: \mu_{electric \ bike} \neq \mu_{classic \ bike}$

t-statistic:-80.85p value:approximately zeroalpha:0.0595% CI:[-1.23, -1.17] minutes

Conclusion:

Reject the null hypothesis

Seasonality vs. Trip Duration (ANOVA test)

Null hypothesis: $H_0: \mu_{winter} = \mu_{spring} = \mu_{summer} = \mu_{fall}$ **Alt. hypothesis:** $H_1: At \ least \ the \ mean \ trip \ duration \ for \ one \ season \ is \ different$

F-statistic e-bike:4,06F-statistic classic-bike:8,64P value for e-bike:appP value for classic bike:app

4,061.92 8,647.42 approximately zero approximately zero

Conclusion:

Reject the null hypotheses for both bike types

Hypothesis Test for Proportion of Summer Trips

Null hypothesis: proportion of summer trips = $\frac{1}{4}$ of all trips **Alt. hypothesis:** proportion of summer trips > $\frac{1}{4}$ of all trips

t-statistic:366.1187p value:approximately zeroalpha:0.05

Conclusion: Reject the null hypothesis

Results

Avg. trip duration of **e-bikes < traditional bikes**

Seasonality affects trip durations

More than a quarter trips (25%) during summer

Peak usage during commuting hours

Members, more rides; casual riders, less

Conclusions

- Stations near **universities**
- 2
- Investment in suburban areas
- 3
- Adapting to **seasonality**
- 4
- **Dynamic** pricing models

Expand e-bike fleet

Limitations

No demographic and weather data

Low-performance computational resources

Proposed Next Steps & Future Work

External Datasets

Weather records, demographic profiles, etc.

2 Geospatial Analysis Population density, public transit hubs, etc.

Benchmarking

Compare results with other bike-sharing systems

Thank you! Questions?

