XGBoost-Driven Demand Prediction for Optimized Electric Vehicle Charging Recommendations

Enhancing EV Charging Efficiency through Data-Driven Usage Patterns

By: NatDave, Qi, Zhaoming (2024)

Outline

Data Analysis

Prediction Data Flow

XGBoost Model

Project Overview

Complex EV Charging Decisions

Goals & Expected Contributions

Demand Prediction (XGBoost)

Charging Recommendations (Optimization Models)

Dataset

EV Charging Sites

Name	id	Description
Caltech	caltech	A research university located in Pasadena, CA. We currently collect data from 54 EVSEs in one campus garage. The site is open to the public but most usage is from faculty, staff and students.
JPL) jpl	A national research lab located in La Canada, CA. This site currently has 50 EVSEs and is only open to employees. It is indicative of a normal workplace schedule.
Office 1	office001	An office building located in the Silicon Valley area. It currently has 8 EVSEs and is used only by employees.

Some Relevant Features in the Dataset

sessionID: Unique identifier for the session

(dis)connectionTime: time EV plugged in/out

Time series data: time zone, timestamp, etc.

kWhDelivered: Energy delivered during session

User Inputs: WhPerMile, kWhRequested, etc.

Input Features

Hourly aggregation

timestamp	lag_1	lag_2	lag_3	lag_4	lag_5	lag_6	lag_7	lag_8	lag_9	lag_10	lag_11	1ag_12	hour_of_day	day_of_week	day_of_month	month_of_year	demand
02/01/2019 13:00	0	0	0	0	0	0	0	0	0	0	0	1	13	2	2	1	4
02/01/2019 14:00	4	0	0	0	0	0	0	0	0	0	0	0	14	2	2	1	16
02/01/2019 15:00	16	4	0	0	0	0	0	0	0	0	0	0	15	2	2	1	14
02/01/2019 16:00	14	16	4	0	0	0	0	0	0	0	0	0	16	2	2	1	13
02/01/2019 17:00	13	14	16	4	0	0	0	0	0	0	0	0	17	2	2	1	6
02/01/2019 18:00	6	13	14	16	4	0	0	0	0	0	0	0	18	2	2	1	0
02/01/2019 19:00	0	6	13	14	16	4	0	0	0	0	0	0	19	2	2	1	1
02/01/2019 20:00	1	0	6	13	14	16	4	0	0	0	0	0	20	2	2	1	6
02/01/2019 21:00	6	1	0	6	13	14	16	4	0	0	0	0	21	2	2	1	2
02/01/2019 22:00	2	6	1	0	6	13	14	16	4	0	0	0	22	2	2	1	3
02/01/2019 23:00	3	2	6	1	0	6	13	14	16	4	0	0	23	2	2	1	3
03/01/2019 00:00	3	3	2	6	1	0	6	13	14	16	4	0	0	3	3	1	2
03/01/2019 01:00	2	3	3	2	6	1	0	6	13	14	16	4	1	3	3	1	1
03/01/2019 02:00	1	2	3	3	2	6	1	0	6	13	14	16	2	3	3	1	0
03/01/2019 03:00	0	1	2	3	3	2	6	1	0	6	13	14	3	3	3	1	0
03/01/2019 04:00	0	0	1	2	3	3	2	6	1	0	6	13	4	3	3	1	0
03/01/2019 05:00	0	0	0	1	2	3	3	2	6	1	0	6	5	3	3	1	0
03/01/2019 06:00	0	0	0	0	1	2	3	3	2	6	1	0	6	3	3	1	0
03/01/2019 07:00	0	0	0	0	0	1	2	3	3	2	6	1	7	3	3	1	0
03/01/2019 08:00	0	0	0	0	0	0	1	2	3	3	2	6	8	3	3	1	0
03/01/2019 09:00	0	0	0	0	0	0	0	1	2	3	3	2	9	3	3	1	0
03/01/2019 10:00	0	0	0	0	0	0	0	0	1	2	3	3	10	3	3	1	0
03/01/2019 11:00	0	0	0	0	0	0	0	0	0	1	2	3	11	3	3	1	0
03/01/2010 12:00	0	0	0	0	0	0	0	0	0	0	1	2	12	3	3	1	0

EDA - JPL

EDA - Caltech

Value Counts of spaceID for CalTech

Distribution of Session Durations

Full Hour Against Half Hour Resolution

XGBoost Model Structure

Hyperparameter Optimization (Bayesian)

A Maximum depth: 8

Child-weight: 1

□ Sub sample: .997

Learning rate: .036

Estimator numbers: 194

Bayesian Optimization

XGBoost Results

XGBoost Training and Test RMSE over Epochs

Comparison with Linear Regression

XGBoost 30 min. Resolution

XGBoost 30 min. No Month of Year

XGBoost 24-hour Input

Scatter Plot Comparison

RMSE = 1.045

RMSE = 1.001

RMSE = 0.893

Generalization for Caltech Data

Generalization for Caltech Data

Generalization for Caltech Data

Charging Recommender System

When and where to charge?

- Ask for charge at *t_{current}*
- Need SOC^{required}

- Waiting for good price $t_{start} > t_{current}$
- Charge more than SOC^{required} to get bonus

Mixed Integer Programming Formulation

Objective: minimize the overall cost

- Driving cost
- □ Charging pricing
- Waiting penalty
- Negative of over charging bonus: reduce charging frequency

Constraints

- □ space availability
- □ driving distance
- □ Charging electricity requirement

Objective: minimize the overall cost

- Driving cost
 Charging pricing
 Waiting penalty
- Negative of over charging bonus: reduce charging frequency

$$\begin{array}{ll} \text{Minimize} & \alpha^{\text{distance}} \sum_{i \in I} d_i x_i + \alpha^{\text{price}} \sum_{i \in I, t \in T} p_{it} x_i w_t + \alpha^{\text{late}} (t_{start} - t_{now}) \\ & & - \alpha^{\text{fixed}} [\gamma(t_{end} - t_{start}) - SOC^{required}] \end{array}$$

Decision variables

- \Box Where to charge x_i
- \Box When to charge t_{start}, t_{end}

Constraints

Case study

Input

- □ 24 hours demand prediction of 10 charging stations
- □ Charing request time is 13:00
- □ Require 6 hours of charging

Case study

Output

- Select the 3rd charging station
- Start at 14:00 and end at 22:00
- Charging two more hours and wait for two hours

Use 24 hours (instead of 12) prior data for prediction

□ Predicting **actual** demand or **deviation** from average?

Repeat test for the two other stations

Develop an optimization-based recommender system

